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USA Mathematical Talent Search

PROBLEMS / SOLUTIONS / COMMENTS
Round 3 - Year 12 - Academic Year 2000-2001

Gene A. Berg, Editor

1/3/12. Find the smallest positive integer with the property that it has divisors ending with e
decimal digit; i.e., divisors ending in 0, 1, 2, ..., 9

Solution 1 by Rishi Gupta (8/CA): Let us first look at the prime factors of the answer.  There
must be a 5, because any number ending in 5 is divisible by 5.  There must also be a 2, for
same reason.  Therefore, so far, we have factors: , and the numbers 0, 1, 2, and
covered.

We have the numbers 3, 4, 6, 7, 8, and 9 left.

If we can find multiples of the three odd numbers (3, 7, and 9), then the even numbers are co
because of the multiple of 2 ( , ,  ).  Therefore all we need t
worry about is 3, 7, and 9.

One solution (which may not be smallest) would be to use the LCM of 3, 7, and 9, which is
So the answer would have to be less than or equal to .

Let’s see if any of the numbers ending in 7 have factors ending in 3 and 9.  Seven and 17 a
primes, but 27 has 3 and 9 as factors.  So now  is a smaller solution.  Any o
possible solution below 27 would have to use a multiple of 7 or 17.  The only candidates ar
and 21, neither of which has a factor of 9 or 19.

Verification: 270 is divisible by 10, 1, 2, 3, 54, 5, 6, 27, 18, and9.

Therefore the solution is 270.

Solution 2 by Matthew Pelc (12/PA):Solution 270.
Call the desired integer N. All positive integers have 1 as divisor, so it is immediately dealt w
The only way a divisor of N can end in zero is for it to be a multiple of 10, thus 2 and 5 mus
prime factors of N, and N is a multiple of 10. Divisors ending in 5 would have to be multiples
5, but we already have taken care of 5.  So  covers 0, 1, 2, and 5.

Any multiplication with 5 just produces another number ending in 0 or 5, so 5 is not really a
sideration in determining the remaining needed factors. Any divisor ending with 7 automatic
gives us another ending with 4 (because 2 is already a factor of N), and similarly any ending
9 gives us another factor ending with 8.  The smallest and most economical solution for 7 a

2 5× 10=

2 3× 6= 2 7× 14= 2 9× 18=

63 10×

27 10× 270=

27 10× =

2 5×
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would be . The 4 ( ) and 8 ( ) are taken care of simult

neously.  Notice 3 and 6 are covered since 3 is a factor and .  So
the smallest positive integer with divisors ending in each decimal digit. If we are not sure, we
check each multiple of 10 up to 270; but notice only 70, 140, 170 and 210 have divisors en
with 7.  Of these only 210 has a divisor ending in 3, but 210 has no divisor ending in 8.  27 
best because it contains 3 and 9, and with 2 it takes care of 3, 4, 6, 7, and 9 all at once.

Solution N =270.

Solution 3 by Mike Church (12/PA): The smallest such integer is270.
Proof: First, since the desired integer has a divisor ending in 0, it is clear that this integer mu
divisible by 10.  Hence we can eliminate all integers not divisible by 10.

That our integer is divisible by an integer ending in 7 implies it is divisible by an integer am
the set {7, 17, ...}. Hence, we can remove all other integers from our consideration. Thus th
smallest candidates for our desired integer are:

70, 140, 170, 210, 270

Next, it is desired that our integer have a factor ending with 3, so it must be divisible by one
among 3, 13, 23, and so on.  Thus we can eliminate 70, 140, and 170,  and hence there re

210 and 270

The divisors of 210 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, and 210.  As this
lacks elements whose last digits are 8 or 9, 210 can also be disqualified.

Hence, all integers less than 270 have been disqualified.  Now evaluate the divisors of 270
1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, and 270.

On inspection, 270 indeed does have the desired property.

Editor’s Comment:  We are grateful to Professor Bruce Reznick of the University of Illinois 
this nice problem, which he first published (via Martin Gardner) in “Science Fiction Puzzle Ta
in the early 1980’s.

2/3/12. Assume that the irreducible fractions between 0 and 1, with denominators at mos

are listed in ascending order. Determine which two fractions are adjacent to in this lis

Editor’s comment: For a discussion ofcontinued fractions andFarey series see the Editor’s
Comments following the solutions.

27 3
3

3 9×= = 27 2× 54= 9 2× 18=

6 2 3×= 2 5 27×× 270=

17
76
------
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Solution 1 by Christopher Lyons (12/CA):

We consider the continued fraction expansion of :

To find the fraction that is directly below , we must realize that changing the 8 in the
expansion to a higher number would, in fact, make the overall number smaller. So we must fi
out how much to add to the 8 in order to turn the overall fraction into one directly below it on
list.  Let us write the numberbelow  as having the continued fraction expansion

,

where a is a positive real number. When we condense x into its common fractional form, we

.

We know the denominator is less than or equal to 99, so . We also know that both 17a and

76a must be positive integers.  But since 17 and 76 are coprime,a must be an integer itself.  The
only positive integer less than  is 1, so , and

.

To find the fraction directlyabove , we mustsubtract some amount from the 8.  We call
this larger fractiony, and write its continued fraction expansion as

,

whereb is a positive real number.  When we condense y into its traditional rational form, we

.

Again, we know the denominator cannot exceed 99, so . Once more, b must be an in

due to the lack of common factors between 17 and 76.  Therefore, , and

.

So

.

17
76
------

17
76
------ 0 1

4 1

2 1
8
---+

------------+
----------------------+ 0 4 2 8, ,;[ ]= =

17 76⁄

17 76⁄

x 0 4 2 8 1
a
---+, ,;=

x
17a 2+
76a 9+
------------------=

a
90
76
------≤

90 76⁄ a 1=

x
19
85
------=

17 76⁄

y 0 4 2 8 1
b
---–, ,;=

y
17b 2–
76b 9–
------------------=

b
108
76
---------≤

b 1=

y
15
67
------=

19
85
------ 17

76
------ 15

67
------< <
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Solution 2 by Lisa Leung (10/MD):  The irreducible fractions between 0 and 1 with denomin
tors at most 99, listed in ascending order, describes a Farey series of order 99.

Two basic theorems that describe characteristics of successive terms in a Farey seriesFn of order
n are:

(1) If  and  are two successive terms of the Farey series, then .

(2) If  and  are two successive terms of the Farey series, then .

By using theorem (1) with  set to  whereh is 17 andk is 76,

.

This is similar to solving . This is solved when . Substitutin

15 into the first equation yields , and .
Thus

.

Next, by using theorem (1), but with  as ,

.

This is similar to solving .  This is satisfied when .  However

whenk = 9, it contradicts theorem (2).  Thus .  Whenk = 85, it satisfies both theorems.

When substituted into the equation, .

Thus, .

Solution 3 by Jason Chiu (12/WY): Answer: .

Theorem.  If  and  are two successive terms of the Farey seriesFn, then .

For several proofs of this well-known theorem, see G.H. Hardy and E.M. Wright,An Introduction
to the Theory of Numbers, Fifth Edition, Oxford University Press, London (1979).

Let and respectively denote the fractions left-adjacent and right-adjacent to inF99.

By the contrapositive of the Theorem, and . To solve the fir
Diophantine equation, apply Euclid’s Algorithm to obtain

,

h
k
--- h′

k′
---- kh′ hk′– 1=

h
k
--- h′

k′
---- k k′+ n>

h k⁄ 17 76⁄
76h′ 17k′– 1=

76h′ 1 mod 17( )≡ h′ 15 mod 17( )≡
k′ 67= h′ k′⁄ 15 67⁄=

17
76
------ 15

67
------<

h′ k′⁄ 17 76⁄
17k 76h– 1=

17k 1 mod 76( )≡ k 9 mod 76( )≡
k 9≠

h
k
--- 19

85
------=

19
85
------ 17

76
------ 15

67
------< <

19
85
------ 17

76
------ 15

67
------< <

h
k
--- h′

k′
---- kh′ hk′– 1=

a
b
--- a′

b′
---- 17 76⁄

17b 76a– 1= 17b′ 76a′– 1–=

76 4 17 8+⋅=
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Backing up through these equations gives

,

yielding the solution to the equation . An alternate way to obta

this solution is to compute the convergents to the continued fraction expansion of .  The

vergents in this expansion are

, , ,

 also gives the solution  to the equation .

Since gcd(17,76) = 1, the general solution of the equation  is ,

.  For any solution  to ,

so that choosing the largest value ofb minimizesk.  Hence the ordered pair

gives the smallest value ofk and  is left adjacent to .

Similarly, the general solution to  is ,  so the

ordered pair  gives the smallest value

and  is right-adjacent to .

Editor’s Comment:   A similar problem appeared in the January 1999 issue ofMathematical
Digest, an excellent South African mathematical journal for high school students.  This prob
does allow for computer solutions; we welcome them, but commend such solutions only if 
are based on a clever algorithm and deal with accuracy. We thank our problem editor, Dr. G
Berzsenyi, for this problem.

This interesting problem gives us an opportunity to expand on two interesting mathematica
ics, continued fractions and Farey series.Continued fractions were discussed in theSolutions to
Round 1 of Year 10, available on the USAMTS web site.

By aFarey seriesFn of ordern, we mean the set of all fractions  with , gcd(h,k) = 1,

, and arranged in ascending order of magnitude.  For example,F5  is

17 2 8 1+⋅=

8 1 8 0+⋅=

1 17 2 8⋅– 17 2 76 4 17⋅–( )– 9 17 2 76⋅–⋅= = =

a b,( ) 2 9,( )= 17b 76a– 1=

17
76
------

P0

Q0
------ 0=

P1

Q1
------ 0 1

4
---+ 1

4
---= =

P2

Q2
------ 0 1

4 1
2
---+

------------+ 2
9
---= =

P3

Q3
------ 0 1

4 1

2 1
8
---+

------------+
----------------------+ 17

76
------= =

P2

Q2
------ 2

9
---= a b,( ) 2 9,( )= 17b 76a– 1=

17b 76a– 1= a 2 17t+=

b 9 76t+= a b,( ) 17b 76a– 1=

k
17
76
------ a

b
---– 1

76b
---------= =

a b,( ) 19 85,( )=

19 85⁄ 17 76⁄

17b′ 76a′– 1–= a′ 2– 17t+= b′ 9– 76t+=

a′ b′,( ) 15 67,( )=

k′ a′
b′
---- 17

76
------– 1

76b′
-----------= =

15 67⁄ 17 76⁄

h
k
--- 0 h k≤ ≤

1 k n≤ ≤
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These series have remarkable properties, some of which are mentioned in the solutions ab
restate two of the theorems here so you might easily confirm them for this example:

(1) If  and  are two successive terms of the Farey series, then .

(2) If  and  are two successive terms of the Farey series, then .

Proofs of these and other properties are given in G.H. Hardy and E.M. Wright,An Introduction to
the Theory of Numbers, Fifth Edition, Oxford University Press, London (1979).

3/3/12. Let have roots . Let . Determine

the product .

Solution 1 by Sofia Leibman (8/OH):We can write the polynomial  in the form

.

The product .

.

So the product can be written as

The solution is- 23.

Solution 2 by Sarah Emerson (12/WA):
Any polynomial of degreen with leading coefficient 1 can be factored as

where  are the roots of the polynomial, are complex numbers of the form ,a

andb are real numbers and eithera or b, or both, can be zero).

Therefore,  can be expressed as

.

Also,  has two roots,s1 ands2, so .

Then  and

0
1
--- 1

5
--- 1

4
--- 1

3
--- 2

5
--- 1

2
--- 3

5
--- 2

3
--- 3

4
--- 4

5
--- 1

1
---, , , , , , , , , ,

h
k
--- h′

k′
---- kh′ hk′– 1=

h
k
--- h′

k′
---- k k′+ n>

p x( ) x
5

x
2

1+ += r1 r2 r3 r4 r5, , , , q x( ) x
2

2–=

q r1( )q r2( )q r3( )q r4( )q r5( )

x
5

x
2

1+ +

x r1–( ) x r2–( )… x r5–( )

q r1( )q r2( )…q r5( ) r1
2

2–( ) r2
2

2–( )… r5
2

2–( )=

r i
2

2– 2 r i–( ) 2– r i–( )=

2 r1–( ) 2 r2–( )… 2 r5–( ) 2– r1–( ) 2– r2–( )… 2– r5–( )

p 2( ) p 2–( )=

2( )
5

2( )
2

1+ +[ ] 2–( )
5

2–( )
2

1+ +[ ]⋅=

23–=

x z1–( ) x z2–( )… x zn 1––( ) x zn–( )

z1 z2 …zn, , a bi+

p x( ) x
5

x
2

1+ +=

p x( ) x r1–( ) x r2–( ) x r3–( ) x r4–( ) x r5–( )=

q x( ) x
2

2–= q x( ) x s1–( ) x s2–( )=

q r1( ) r1 s1–( ) r1 s2–( )=
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since we changed an even number of signs and reordered terms.  This is equivalent to
.

Factoring  gives the two roots ofq(x):  and

.

Plug these roots ofq(x) into the original equation forp(x).

.

This method will work with any two polynomials; however, if both polynomials are of orders t
are odd numbers, the product of  will be the negative of
because the odd number of negative signs will not all cancel out.

Editor’s Comment:  We are thankful to Professor Rob Hochberg of the University of Conne
cut for this interesting problem.

4/3/12. Assume that each member of the sequence is either a+ or a sign. Deter-

mine the appropriate sequence of+ and signs so that

.

Also determine what sequence of signs is necessary if the sixes in the nested roots are
replaced by sevens. List all integers that work in the place of sixes and the sequences o
that are needed with them.

Solution by Ho Seung (Paul) Ryu (9/KS):

•   Firstly, we notice that . So, if we replace the 2 on the right side with the ident

expression  in infinite number of times, we will have obtained

.  So the sequence of signs for 6 is simply- ,- ,- ,- ,... .

•   For number 7, , which is of little help, but , so .

So, by replacing 2 on the right side, we get , just alternating

q r1( )q r2( )q r3( )q r4( )q r5( ) =

r1 s1–( ) r1 s2–( ) r2 s1–( ) r2 s2–( ) r3 s1–( ) r3 s2–( ) r4 s1–( ) r4 s2–( ) r5 s1–( ) r5 s2–( )=

s1 r1–( ) s1 r2–( ) s1 r3–( ) s1 r4–( ) s1 r5–( ) s2 r1–( ) s2 r2–( ) s2 r3–( ) s2 r4–( ) s2 r5–( )=

p s1( ) p s2( )

q x( ) x
2

2– x 2–( ) x 2+( )= = s1 2=

s2 2–=

q r1( )q r2( )q r3( )q r4( )q r5( ) p 2( ) p 2–( )=

2( )
5

2( )
2

1+ +[ ] 2–( )
5

2–( )
2

1+ +[ ]⋅=

23–=

f roots ofg x( )( ) g roots of f x( )( )

◊i〈 〉 ∞
i 1= –

–

2 6 1 6 2 6 3…◊◊◊=

2 6 2–=

6 2–

2 6 6 6 6 …––––=

2 7 3–= 3 7 2+= 2 7 7 2+–=

2 7 7 7 7 …+–+–=
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signs- ,+,- ,+, ... .
•   For the number 8, we will prove that 8 cannot be used.  That is for a simple reason, that

, but no sequence of radicals and 8s can be larger than .  This q

tity is given by .  and thus

.  This is less than 4, so 8 does not work in the proble

• No numbers greater than 8 satisfy the conditions set forth in the previous statement, so no
can investigate numbers less than 6.

•   Now for 5, , , , .  The numbers just
never cease to increase, so we can never have a working sequence of signs.

•   For 4, , and we are stuck right away.

• For 3, , , and so . Thus the sequence o
signs is+,- ,+,- , ... .                             .

•   As for 2, , so  and we have sequence+,+,+,+, ... .

• Lastly, for 1, , , , and we just keep increasing. Therefo
1 does not work.

Thus for the number six, the required sequence of signs is just a string of minus signs- ,- ,- ,- , ... .
The numbers that work in place of six, and the sequence of signs needed are:

2:  All plus signs+,+,+,+, ... .
3:  Alternating plus/minus+,- ,+,- , ... .
7:  Alternating minus/plus- ,+,- ,+, ... .

Editor’s comment:  This wonderful problem was proposed by Dr. Rodrigo Gomez of NSA.

5/3/12. Three isosceles right triangles are
erected from the larger side of a rectan-
gle into the interior of the rectangle, as
shown on the right, where M is the mid-
point of that side. Five circles are
inscribed tangent to some of the sides
and to one another as shown. One of the
circles touches the vertex of the largest
triangle.

Find the ratios among the radii of the
five circles.

2 8 4–= 8 8 …++

x 8 8 …++ 8 x+= = x
2

8 x+= x
2

x– 8– 0.=

x
1 1 4 1 8–( )⋅ ⋅–±

2
------------------------------------------------ 1 33±

2
-------------------= =

2 5 1–= 1 5 4–= 4 5 11+= 11 5 116+=

2 4 0–=

2 3 1+= 1 3 2–= 2 3 3 3 3 …–+–+=

2 2 2+= 2 2 2 …++=

2 1 3+= 3 1 8+= 8 1 63+=

M



Solution by Lisa Leung (10/MD): Since
the triangles are isosceles right triangles
that are erected from the larger side of a
rectangle, the two circles marked asa are
congruent and the two circles marked asc
are congruent.

Without loss of generality, let the length of
the rectangle be 1 unit, andra, rb, andrc be
the radius of circlea, b andc respectively.

As shown in Figure 2,

                                    (1)

From the base of figure 3,

           (2)

From the width of the rectangle in Figure 3,

                                             (3)

Substitute into (2),

Take the positive square root,

                    (4)

Substitute into (3),

M

a a

b

c c

Figure 1.
r a r a 2+ 1

4
---=

1/2

ra

Figure 2.

r a
1

4 1 2+( )
------------------------ 2 1–

4
----------------= =

1
2
--- r c r b+( )2

r c r b–( )2
– 2 r br c r c+= =

1 2+( )r c
1

2
------- 1

2
--- 2r b+ 

 =

r b 1 2
2

-------+ 
  r c

1
4
---–=

rc

rc

rc-rbrb
rb

rb

1/2

1/2

Figure 3.

1
2
--- 2 1 2

2
-------+ 

  r c
2 r c

4
----– r c+=

1
2
--- r c– 2 1 2

2
-------+ 

  r c
2 r c

4
----–=

1 2r c–( )2
16 1 2

2
-------+ 

  r c
2 r c

4
----–×=

4r c
2

4r c– 1+ 16 8 2+( )r c
2

4r c–=

r c
2 1

4 3 2 2+( )
---------------------------- 1

4 1 2+( )
2

---------------------------= =

r c
1

2 1 2+( )
------------------------ 2 1–

2
---------------- 2r a= = =
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Thus, the three smallest circles have the same radii. The ratios among the radii of the five c
are:

a:a:b:c:c = 1:1:1:2:2.

Editor’s comments: We are indebted to Professor Hiroshi Okumura of Japan for this wonde
shungaku problem.  Professor Okumura is a longtime enthusiastic promoter of the Japane
equivalent of the USAMTS.

r b 1 2
2

-------+ 
  2 1–

2
---------------- 

  1
4
---– 2 1–

4
---------------- r a= = =
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